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Abstract: 
 
Since the outbreak of the financial crisis in 2007-2009 and the subsequent European sovereign 
debt crisis, stress tests have experienced a real boom as a supplementary instrument in the 
quantitative risk management toolbox. Stress testing is often performed in a model-based (im-
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a specific scenario need to be translated with the help of a quantitative model into adverse risk 
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ting up and implementing the underlying model can drive the results of a quantitative stress 
test for default probabilities. For this purpose, we employ several variations of a CreditPortfo-
lioView-style model. Our findings show that seemingly only slightly different specifications 
can lead to entirely different stress test results. This emphasizes the importance of extensive 
robustness checks. 
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1 Introduction 

Since the outbreak of the financial crisis in 2007-2009 and the ongoing European sovereign 

debt crisis, the importance of stress tests for financial institutions has enormously increased. 

First, standards for bank-individual stress tests as part of the requirements of the second pillar 

of Basel II have significantly been extended (see FSA (2008, 2009), CEBS (2010), BIS 

(2011)). Second, regulatory authorities, such as the European Banking Authority, have carried 

out system-wide stress tests to analyze the vulnerability of the largest banks in the financial 

system. 

 

Depending on the risk type and the aim of a stress test, it can include model-based elements. 

If, for example, one is interested in the loss of an equity portfolio that would occur if all stock 

values decreased by, for example, twenty percent, no model is needed. The same is true of 

computing losses of fixed-income portfolios that would occur when there is a parallel shift in 

the term structure of risk-free interest rates of, for example, 200 basis points. However, if a 

bank wants to calculate the economic capital requirement (e.g., measured by the value-at-risk 

or by the expected shortfall) that is necessary in an adverse scenario with increased stock re-

turn volatilities and increased stock return correlations, it needs a model that translates the in-

creased values for the volatilities and correlations into stressed risk measure values (such as 

value-at-risk or expected shortfall). In the field of credit risk stress tests, a model is also 

needed when analysing the effects of increased default probabilities (PD), loss given defaults 

(LGD) and increased default correlations (or asset return correlations) on the economic capital 

requirements. If a bank is only interested in the increase in expected credit losses in adverse 

economic scenarios (e.g. over a risk horizon of one year), correlations do not matter and a 

model would not be necessary to carry out a stress test when the bank explicitly assumes a 

specific increase in all PD and LGD values as the stress scenario. A possible strategy might be 

to take the largest percentage change in these values that have been observed in the past and 
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to apply them to the current levels. If, however, a bank wants to test the effect of a forecasted 

baseline or adverse scenario for the economy (measured by some economic indicators, such 

as GDP growth, unemployment rate or inflation rate) on the expected credit portfolio loss, it 

needs a model to translate the economic indicator forecasts into modified PD and LGD val-

ues.4 

 

If a model is needed either to translate adverse risk factor realizations (corresponding to an as-

sumed adverse scenario) into stressed risk parameters or to translate explicitly stressed risk 

parameters into stress test results (such as stressed value-at-risks or expected shortfalls), it is 

likely that the stress test results will depend on the modelling assumptions and the applied es-

timation techniques. From the perspective of the regulatory authorities, it is crucial to know 

how large the potential is for banks to manipulate the results of stress tests by choosing spe-

cific modelling and estimation techniques. As failed internal or external stress tests may force 

a bank to increase its equity and banks usually consider equity to be expensive,5 banks at least 

have an incentive to employ those modelling and estimation techniques that yield the stress 

test results that are most favourable for them.6 

 

In this paper, we analyze for a specific risk type (credit risk) and for a specific objective of a 

stress test (expected losses and partly risk measure values) how large multi-period stressed PD 

values can vary depending on the modelling assumptions and estimation techniques that are 

employed. To achieve this, starting from a base model specification, we employ several varia-

                                                 
4 For the macro stress tests performed by the European Banking Authority (EBA) in the eurozone, this is exactly 
what banks have to do (unless they want to employ the benchmark PD and LGD values provided by the EBA). 
The corresponding forecasts of the EU commission for a risk horizon of two to three years are employed as the 
economic baseline scenario and adverse scenario (see EBA (2014), ECB (2014)). 
5 See Admati and Hellwig (2013) for an extensive discussion of supposedly expensive bank equity. 
6 For example, there are indications that banks use the degrees of freedom within internal ratings-based ap-
proaches in such a way that the volume of risk-weighted assets and, hence, the regulatory capital requirements 
decrease (see BIS (2014) or Behn et al. (2014)). 
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tions of a CreditPortfolioView (CPV)-style model.7 All variations are statistically sound ap-

proaches and it is not obvious ex-ante why one specification or estimation technique should 

be more adequate than another. However, as we show, the chosen model specifications and 

the employed estimation techniques can hugely influence the results for the stressed default 

probabilities. These results show the importance of extensive robustness checks for the under-

lying model when interpreting the results of credit risk stress tests. 

 

The remainder of the paper is structured as follows: Section 2 provides a short review of the 

credit risk stress testing literature. Section 3 presents the methodology of the analysis and Sec-

tion 4 shows the results. Section 5 discusses potential shortcomings and extensions. Section 6 

concludes. 

 

2 Literature Review 

We divide the review of the credit risk stress test literature into five fields: First, a large body 

of the literature deals with implicit stress tests within CPV-style models (or extensions there-

of).8 These papers look for macroeconomic variables that can explain the systematic variation 

of default rates across time and, afterwards, these macroeconomic variables are stressed to 

compute stressed default rates (see, for example, Boss (2002), Sorge and Virolainen (2006), 

Pesaran et al. (2006), Jokivuolle et al. (2008)). In some cases, feedback effects between the 

performance of the banking sector and the real economy are considered in these papers (see, 

for example, Virolainen (2004), Wong et al. (2008)). As an alternative to CPV-style econo-

metric stress test approaches, Schechtman and Gaglianone (2012) apply quantile regressions 

to estimate the link between macro variables and credit risk. Second, in another strand of lit-

erature, (asymptotic) confidence intervals of statistically estimated risk parameters (such as 

PD or asset return correlations) are used as the base for deriving extreme, yet plausible reali-
                                                 
7 See Wilson (1997a, 1997b). 
8 For a more detailed survey on quantitative credit risk stress test methodologies see, for example, Foglia (2009). 
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zations of these risk parameters in adverse scenarios (see, for example, Rösch and Scheule 

(2007) or Höse and Huschens (2008)). Third, stress tests for credit risk concentrations are car-

ried out. For example, Bonti et al. (2006) employ a multi-factor credit portfolio model (similar 

to CreditMetricsTM) for a stress test on sector credit risk concentrations. To achieve this, they 

restrict the support of the probability distribution of specific systematic risk factors to adverse 

realizations. Fourth, multi-risk stress test approaches are proposed. For example, Drehmann et 

al. (2010) present an integrated bank model for a simultaneous stress test of credit and interest 

rate risk. Fifth, since a few years, banks have been obliged to carry out so-called reverse stress 

tests. While in regular stress tests, adverse scenarios are chosen on the basis of historical ob-

servations or expert knowledge (or both) and, afterwards, the consequences of these scenarios 

for the target indicator of the stress test ((expected) losses, regulatory or economic capital, li-

quidity) are analyzed, reverse stress tests do it the other way round. In reverse stress tests, ex-

actly those scenarios are looked for that make a bank’s business plan unviable and cause the 

bank to cross the frontier between non-default and default. In the next step, the most plausible 

of these scenarios has to be found (Grundke and Pliszka (2013)). Literature on reverse stress 

testing is still relatively sparse (see, for example, Grundke (2011, 2012) or Grundke and 

Pliszka (2013) and the papers cited therein). Finally, in a strand of literature related to reverse 

stress testing, the worst (in the sense of ‘expected losses for a given portfolio’) scenario from 

a set of scenarios with a given plausibility (for example, measured by the Mahalanobis dis-

tance) is looked for. Examples of this approach include Breuer et al. (2008, 2010, 2012). 

 

3 Methodology 

In the following, first, the base model for predicting stressed default probabilities is intro-

duced. Second, various modifications of this base model are described. All modifications are 

statistically sound approaches and it is not obvious ex-ante why one specification should be 
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more adequate than another. However, as we show in Section 4.2, the specifications can huge-

ly influence the results for the stressed default probabilities. 

 

3.1 Base model 

As the base model, we employ a CreditPortfolioView (CPV)-style approach that relates mac-

roeconomic variables to sector-specific default rates. The macroeconomic variables are cho-

sen in such a way that they explain a large fraction of the time series variation in default rates. 

More precisely, it is assumed that for each sector s , {1,2,..., }s S , a macroeconomic index 

in period t  

 , ,0 , , ,
1

I

s t s s i i t s t
i

y x u 


      (1) 

linearly depends on some macroeconomic variables ,i tx , {1,2,..., }i I . The macroeconomic 

index ,s ty  is assumed to be related to the sector-specific default probability ,s tp  by a logit 

transformation: 

  , ,
, ,

1 1
ln 1

1 exps t s t
s t s t

y p
p y

 
    

 
. (2) 

 

The macroeconomic risk factors ,i tx , {1,2,..., }i I , are modelled by autoregressive processes 

of ik -th order (AR( ik ) process): 

 , ,0 , , ,
1

ik

i t i i j i t j i t
j

x x v  


    . (3) 

To avoid overfitting, we restrict our search for an adequate time series model to AR(k ) proc-

esses with a maximum order of 2k  . First, we apply the AIC (Akaike Information Criterion) 

and the BIC (Bayesian Information Criterion) to choose the appropriate number of lags.9 Sec-

                                                 
9 The AIC and the BIC did not contradict each other in any case. Thus, prioritization was not necessary. 
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ond, insignificant parameters ,i j  ( {1,2,..., }i I , {0,1,2}j ) are set to zero ( p -values  0.1) 

and the significance of the parameters of the remaining parts of the process is checked 

again.10 

 

When the Godfrey-Breusch test indicates that the null hypothesis of no autocorrelation (up to 

order 4) of the error terms ,i tv  can be rejected at a significance level of 5%, the Newey-West 

estimator is employed to compute the t -statistics and, hence, the p -values of the ordinary 

least squares (OLS) parameter estimates. The same is carried out for the estimation of the in-

dex equation (1). 

 

The error terms 1Su   and 1Iv   are assumed to be multivariately normally distributed:11 

 (0, )
u

N
v

 
 

 
  (4) 

with ( ) 10 S I   and 

 , ( ) ( )
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0
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u u S I S I

v v

   
    

  (5) 

and ,
S S

u u
  , ,

I I
v v

  . 

 

Combining (1) to (5), the distribution of the sector-specific default probabilities for the next 

m  time periods can be computed using the following Monte Carlo simulation algorithm with 

D  simulation runs:12 

                                                 
10 See, for example, Banque de France (2009) for a similar approach. 
11 The assumed multivariate distribution of the error terms influences the probability distributions of the stressed 
default probabilities. For an alternative, see, for example, Simons and Rolwes (2009), who model the error terms 
of the index equations as well as the error terms of the risk factor equations by a t-distribution. 
12 See Boss (2002, p. 81-82). 
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For 1d   to D  

 For 1n t   to t m  

(i) Using the Cholesky decomposition of the variance-covariance matrix 

 , draw random numbers for the multivariately normally distributed 

error terms ( )
,
d

s nu , {1,2,..., }s S , and ( )
,
d

i nv , {1,2,..., }i I . 

(ii) Calculate forecasts for the macroeconomic variables ( )
,
d

i nx , 

{1,2,..., }i I , based on ( )
,
d

i nv  and the historical realizations ( )
, 1
d

i nx  , ( )
, 2
d

i nx  , 

…, ( )
, i

d
i n kx  . 

(iii) Calculate forecasts for the sector-specific macroeconomic indices ( )
,
d

s ny  

and default probabilities ( )
,
d

s np , {1,2,..., }s S , based on ( )
,
d

s nu  and the 

forecasts for the macroeconomic variables ( )
,
d

i nx . 

Based on the realizations ( )
,
d

s np , {1,..., }d D , calculate empirical distribution functions for the 

sector-specific and time period-specific default probabilities ,s np , {1,2,..., }s S , 

{ 1,..., }n t t m   . 

 

To compute distributions for stressed sector-specific and time period-specific default prob-

abilities, the algorithm has to be amended slightly. Above, in step (i), a vector of i.i.d. stan-

dard normally distributed random variables ( ) 1S Iz    is multiplied by the lower triangular 

matrix A  from the Cholesky decomposition of the variance-covariance matrix TA A   . 

However, to perform a stress test, one or several components of the vector z  are replaced by 

standardized shocks for the systematic risk factors. In the base setting, only one risk factor is 

shocked and the shock is set equal to the standardized historical realization of the error term 
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which had the most negative impact on the macroeconomic index.13 More precisely, we de-

fine the shocked component of the vector z  as: 

 , 1

i

i t

v

v


       with       

, ,
{1,2,..., }

, 1
, ,

{1,2,..., }

min , 0

max , 0

i n s i
n t

i t
i n s i

n t

v
v

v










   
 (6) 

where 
iv  denotes the standard deviation of the error term of the shocked macroeconomic 

variable ix . When we have 1S   (which we assume in the following), the above definition is 

unambiguous. When, however, we have several sectors 1S   and the sensitivities ,s i  have 

different signs, additional criteria have to be introduced to decide whether the largest or 

smallest historical realization of the standardized error term is chosen. The shock (6) has to be 

placed on the 1S  th position of the vector z  and the following components as well as the 

variance-covariance matrix have to be rearranged accordingly. This procedure corresponds to 

using a conditional (on the shock for the error term) multivariate normal distribution for the 

remaining (not shocked) error terms. In the following, we set 3m   and we nearly always14 

assume that there is a univariate shock only in the first future period and that in the subse-

quent two periods all error terms are drawn from the multivariate normal distribution (4). 

However, of course, the initial shock propagates into the next periods according to the em-

ployed AR processes.15 To achieve high accuracy in the Monte Carlo simulation, we employ 

1,000,000D   draws. 

 

                                                 
13 See Boss (2002). 
14 The exceptions are models 10 and 11, where the stress scenario is based on the Mahalanobis distance (see Sec-
tion 3.3.5.2). 
15 Even if the stressed risk factor is only modelled by an error term (which is done in some cases; see Table 3), 
the initial shock propagates into the next periods because the realization of the macroeconomic index in a spe-
cific period is the sum of the initial index realization in 2010 and the modelled stressed and unstressed changes 
in the index in the previous periods. Furthermore, due to the correlation of the risk factors, those risk factors that 
are not explicitly stressed in the first future period are influenced by the stress realization of the remaining risk 
factor and this influence propagates into the next periods according to the AR processes employed for modelling 
the remaining risk factors. 
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3.2 Data and variable selection 

As the data input for estimating (1), we use global yearly default rate data from Standard & 

Poor’s ranging from 1983 to 2010.16 We only employ default rate data for speculative-grade 

obligors because defaults of investment grade obligors are very rare and, hence, default rates 

are near zero and hardly fluctuate over time. Furthermore, we do not differentiate between 

various sectors. Thus, we have 1S  . In practice, banks could use their internal sector-

specific default rate data with a shorter periodicity (e.g., quarterly data). However, to ensure 

that the data are representative, banks will probably only use data from the most recent years 

so that short data samples remain as a statistical problem. 

 

As in Kalrai and Schleicher (2002, pp. 71-75), economic activity indicators, price stability in-

dicators, household indicators, firm indicators, financial market indicators and further external 

indicators for the US are considered to be potential explanatory variables (see Table 1). The 

data is taken from Datastream. 

– insert Table 1 about here – 

 

From the comprehensive set of potential explanatory variables, the most important ones ex-

plaining historical default rates have to be chosen. Some studies select relevant risk factors 

based on expert judgement and, afterwards, ensure that the chosen variables are (multivari-

ately) significant. In these studies, an economic indicator (e.g., GDP) and an interest rate are 

often employed.17 To essentially avoid ad-hoc elements in the selection procedure for the ex-

planatory variables, we apply the stepwise regression upon those variables out of the set of 

                                                 
16 See Standard & Poor’s (2011, p. 68). The data was adjusted for rating withdrawals. The correlation between 
the global yearly speculative-grade default rates and the yearly speculative-grade default rates of US and tax ha-
vens obligors is 97%. In 2010, 75.3% of all defaults were defaults of US and tax havens obligors (see Standard 
& Poor’s (2011, p. 68)). As an alternative to default rates provided by rating agencies, insolvency rates or the 
fraction of non-performing loans (NPLs) to all loans could be used. 
17 See, for example, Banque de France (2009), or Sorge and Virolainen (2006). 
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potential explanatory variables that are univariately significant.18 In detail, the selection pro-

cedure works as follows: First, we include, if univariately significant, the GDP in the model. 

If the GDP proves not to be significant, we add the variable with the highest absolute t -

value.19 Afterwards, we maximize the adjusted 2R  by adding univariately significant macro-

economic variables to the model. A prerequisite for adding a variable (to avoid (imperfect) 

multicollinearity) is that the absolute value of its correlation with any of the other variables 

that have already been included in the model is below 0.8. If the added variable leads to insig-

nificance in some of the earlier added variables, the new specification without the insignifi-

cant variables will be compared with the specification before adding the last variable and the 

one with the higher adjusted 2R  will be used. If the adjusted 2R  cannot be increased further 

by adding new variables, the stop criterion is reached. Figure 1 visualizes the method. 

– insert Figure 1 about here – 

 

To ensure stationarity of the time series of the macroeconomic index as well as the time series 

of the explanatory variables, we apply various tests. First, based on a t -test, we check the sig-

nificance of an intercept and a time trend (significance level 10%) for each time series. Then, 

the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test are applied. An intercept and/or a time trend are only considered 

within these tests when they proved to be significant in the first step. As the results of these 

three tests are partly conflicting, we assume stationarity when the null hypothesis of non-

stationarity can be rejected in at least two tests (ADF, PP test) or the null hypothesis of sta-

tionarity cannot be rejected (KPSS test). For all three tests, the significance level is 10%. 

                                                 
18 A detailed description of this approach is provided, for example, in Rawlings et al. (1998, p. 218-219). For a 
discussion of alternative variable selection procedures for logistic credit risk models, see Hayden et al. (2014). 
Based on a bootstrap analysis, they advocate Bayesian model averaging as an alternative to stepwise model se-
lection procedures that are frequently used in practice. As GDP is used as explanatory variable in all model 
specifications (when it is significant), we do not completely avoid ad-hoc selection elements (see the following 
description of the selection procedure and Figure 1). 
19 For our data, this was once the case, namely for model 3 (log-returns) (see Section 4.1). 
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Where there is a unit root in the characteristic equation of a time series model, we calculate 

the first differences. If there is still a unit root, we calculate the second differences. 

 

3.3 Modifications 

Having implemented a reasonable specification for the modelling of the relationship between 

macroeconomic variables and the default probability (see (1) to (5)), we want to test how sta-

tistically equally reasonable modifications of the base specification influence the results for 

the stressed default probabilities. Table 2 summarizes the specification of the base model and 

gives an overview of the considered modifications that are discussed in this Section. To facili-

tate comparisons, in each case only a single modification (compared to the base model) is 

considered, but no simultaneous modifications. 

– insert Table 2 about here – 

 

For each of these modifications (with the exceptions of the model with fixed AR(2) processes 

for the risk factors (model 8) and the models with modified stress scenarios (models 9 to 11)), 

the stepwise regression approach described above has to be applied once again to select the 

most appropriate explanatory variables in each case. 

 

3.3.1 Stationary methods 

To ensure stationarity of the data, we usually compute first differences of the data points in 

the base model specification. This technique is also frequently applied in the CPV literature.20 

However, other techniques are statistically equally reasonable, for example, computing re-

turns or log-returns.21 Changing the time series transformation to achieve stationarity of the 

data causes some variables in the base model to become insignificant. As only significant ex-

                                                 
20 See, for example, Boss (2002, p. 73). 
21 We apply each stationary method to the data of the explanatory variable as well as to the macroeconomic in-
dex data. 
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planatory variables shall be used, we repeat the stepwise regression for each transformation 

type. Again, we test for stationarity of the transformed data using the ADF, PP and KPSS test. 

As in the base case, conflicting test results were possible. Thus, we again applied the “two out 

of three” rule described above (see Section 3.2). When the return transformation did not yield 

stationary data, the second return (return of the return) was computed.22 

 

3.3.2 Macroeconomic index process 

In this section, we describe modifications of the base model that affect the specification and 

estimation, respectively, of the macroeconomic index equation (1). 

 

3.3.2.1 Time-lagged variables 

In this modification, first, we consider one and two period time-lagged macroeconomic vari-

ables , 1i tx   and , 2i tx  , {1,2,..., }i I , as potential explanatory variables in (1). This approach 

enables us to take into account a delayed impact of macroeconomic variables on the default 

rate.23 Second, one and two period time-lagged realizations of the macroeconomic index 1, 1ty   

and 1, 2ty   are introduced as potential explanatory variables in (1). For both model modifica-

tions, the stepwise regression is repeated to select the most appropriate (multivariately) sig-

nificant explanatory variables. 

 

3.3.2.2 GLS estimator 

The OLS estimator is an efficient estimator only in the case of homoscedastic and serially un-

correlated error terms. When the Godfrey-Breusch test rejects the null hypothesis of no auto-

                                                 
22 When the log-return transformed time series of a variable exhibits a unit root, this variable is excluded be-
cause, due to negative numbers, it is not possible to calculate the log-returns of the log-return transformed time 
series. 
23 See, for example, Boss (2002) for a similar approach. 
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correlation (up to order 4), we apply the Newey-West estimator to correct the t -statistics.24 

However, this only ensures a consistent but not an efficient estimation. 

 

In the base model, the minimal p -value of the Godfrey-Breusch test for the index equation 

(1) is 0.1321. Thus, the null hypothesis of no autocorrelation is shortly not rejected at a sig-

nificance level of 10%. Of course, the non-rejection of the null hypothesis is not an approval 

that it is true. Thus, as a further modification, we apply the generalized least squares (GLS) 

estimator as an alternative to account for potential autocorrelation of the error term in the in-

dex equation (1). The GLS estimator basically assumes a more flexible structure of the vari-

ance-covariance matrix of the error terms: 

  
2
1 1,2 1,

2
2,1 2 2,

1 1

2
,1 ,2

T

T

T T T

Var u u

  
  

  

 
 
  
 
  
 




   


 (7) 

More specifically, we assume that the error term of the macroeconomic index equation (1) 

follows an AR(1) process without intercept:25 

 1, 1 1, 1t t tu u     (8) 

where the error term t  is normally distributed and uncorrelated with all other error terms of 

the model. To determine the model specification in this case, again, the stepwise regression is 

repeated. 

 

                                                 
24 However, as the results in Section 4 show, this was only once the case, namely when estimating the AR(2) 
process for the second differences of Moody’s commodities index (model 8). 
25 See McNeil and Wendin (2007) or Miu and Ozdemir (2009) for a similar procedure. 
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3.3.2.3 Probit function 

In the base model, we employ (as in the original CPV model) a logit transformation to relate 

the observed default rates to realizations of the macroeconomic index. This, however, is not 

the only possible choice. One alternative is using the probit transformation:26 

    1
1, 1, 1, 1,t t t tp y y p       (9) 

where ( )   is the cumulative density function of the standard normal distribution. The index 

1,ty  gets a negative sign as an argument of ( )   in (9) to ensure that – as in the case of the 

logit transformation – increasing index values cause decreasing default probabilities. Again, 

the stepwise regression is repeated for this model specification. 

 

3.3.3 Risk factor processes 

In the base specification, the evolution of the macroeconomic risk factors over time is ex-

plained by a first or second-order autoregressive process, but only statistically significant pa-

rameters are employed. This leads to the situation that for some risk factors an AR(1) process 

is used and for other risk factors an AR(2) process is implemented (see Table 3 in the follow-

ing). In some cases, only the error term remains, meaning that no autoregression at all is con-

sidered. In this section, we want to check for the influence of this assumption on the stressed 

default probabilities. For this, we employ an AR( k ) process of fixed order 2k  , regardless 

of the significance of the estimated parameters.27 

                                                 
26 For further alternatives, see Maddala (1983), Aldrich and Nelson (1984) or Greene (2001). 
27 For a further alternative, see, for example, Hamerle et al. (2008), who model their two explanatory risk factors 
using a VAR process. We also tried to improve the risk factor modelling by adapting a GARCH(1,1)-process to 
the fitted residuals. However, for the second differences of Moody’s commodities index, the corresponding 
GARCH process was non-stationary due to two extreme outliers in 2009 and 2010 (see also in Section 4.2 the 
discussion of the effects of these outliers on the forecasted default probabilities in the base model). Thus, we did 
not pursue this modelling approach any more. 
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3.3.4 Stress test scenarios 

The modifications described in this section do not concern statistical issues, but deal with a 

degree of freedom that risk managers performing stress tests have, namely the choice of the 

stress test scenario. For these modifications, the base model is employed. 

 

3.3.4.1 Hypothetical scenario based on three standard deviations 

In the base specification, the largest historical deviation of the empirical observations from 

the theoretical model for the macroeconomic risk factors with a univariately negative impact 

on the macroeconomic index is employed as the stress scenario. Now, alternatively, the im-

pact of a given shock on the error term of three standard deviations is taken into account.28 

 

3.3.4.2 Hypothetical scenario based on the Mahalanobis distance 

In this modification, a multivariate and multi-period stress test scenario based on the Maha-

lanobis distance of the error terms iv , {1,2,..., }i I , is used.29 The Mahalanobis distance of a 

random vector v  is defined as: 

    1( )
T

Maha v v v       (10) 

where  E v   and   is the variance-covariance matrix of the vector components. The 

smaller the Mahalanobis distance of a realization of the random vector v  is, the more likely 

(plausible) – given the variance-covariance structure of the vector components and assumed 

ellipticity – the respective realization. The Mahalanobis distance is employed to define so-

called trust regions of radius  around  E v  : 

  : ( )NEll v Maha v    . (11) 

 

                                                 
28 Three standard deviations is a frequent choice (see, for example, Breuer et al. (2012, p. 337)). 
29 See, for example, Breuer et al. (2012) for the use of the Mahalanobis distance for stress testing. 
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As in our base model we have three explanatory variables ( 3I  ) and as we consider a dy-

namic three-period stress test ( 3m  ), the dimension of the random vector 

1, 1 2, 1 3, 1 1, 2 2, 2 3, 2 1, 3 2, 3 3, 3( , , , , , , , , )T
t t t t t t t t tv v v v v v v v v v          is 9N  . The random vector v  repre-

sents a three-dimensional path of the error terms of the macroeconomic risk factors over the 

three considered periods. We assume 1, 2, 3,( , , ) (0, )T
n n n vvv v v v N    for all 

{ 1, 2, 3}n t t t     (see (5)). Furthermore, we differentiate between an assumed non-

existence of serial (cross) correlation of the error terms and a model specification in which the 

empirical (cross) autocorrelations are employed to define the covariance matrix of the random 

vector 9v . 

 

Using the above notation, the three standard deviation stress scenarios in Section 3.3.4.1 can 

be represented by 
1

*
1 (3 ,0, ,0)T

vv   , 
2

*
2 (0,3 ,0, ,0)T

vv   , 
3

* 9
3 (0,0,3 ,0, ,0)T

vv     

with *
1( ) 3.16Maha v  , *

2( ) 3.11Maha v   and *
3( ) 3.14Maha v   (in the case of assumed non-

existence of serial (cross) correlation). When we employ the empirical (cross) autocorrela-

tions, we get values for the Mahalanobis distance of 3.40, 2.99 and 3.04. To ensure consis-

tency between the univariate stress scenarios as set out in Section 3.3.4.1 and those ones em-

ployed in this section, we define three trust regions Ell  by setting {3.16,3.11;3.14}   and 

{3.40,2.99;3.04}  , respectively. Thus, the stress scenarios used in this and in the previous 

section are equally plausible in the sense of the Mahalanobis distance. However, the stress 

scenario used in this section defines a multivariate and multi-period shock, whereas the other 

stress scenarios (historical worst case, three standard deviations) only imply a univariate ini-

tial shock in 1t  . Out of each of the three trust regions Ell , we look for the scenario which 

minimizes the expected sum of the changes in the macroeconomic index over the three con-

sidered periods: 
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3

1, 1,
1

arg min ( , ) ,worst
t n t n t

v Ell n

v E y u v F v


  
 

      
   

 . (12) 

where tF  contains all past information up to time t  (in particular about the previous realiza-

tions of the macroeconomic risk factors). As decreasing values for the macroeconomic index 

cause increasing default probabilities, the solution of the optimization problem (12) nearly 

corresponds to the worst case scenario (for a given plausibility) in the sense of expected de-

fault probabilities. Of course, due to Jensen’s inequality and the non-linear transformation be-

tween the macroeconomic index and the default rate, this is not exactly true. 

 

4 Results 

In this section, first, we present the results for the model specifications and, second, we show 

the consequences that differing model specifications have for the stress test results. 

 

4.1 Model specifications 

Tables 3 and 4 show the estimation results for the time series processes of the risk factors and 

for the macroeconomic index equation (1). 

– insert Tables 3 and 4 about here – 

 

Using the information criteria AIC and BIC for selecting the order of the AR processes of the 

risk factors and employing only significant parameter estimates (as described in Section 3.1), 

we effectively obtain a mixture of model specifications (see Table 3). We use first and sec-

ond-order autoregressive processes both coupled with or without an intercept. In some cases, 

we even describe the evolution of the risk factors over time only by the error term (with and 

without an intercept). The specification of the AR processes has an influence on how long it 

takes until an initial shock vanishes. The coefficient of determination 2R  ranges from 15.0% 

to 74.2% and the values for the adjusted 2R  are between 11.5% and 71.7%. 
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Having applied the stepwise regression approach, we include the first differences in the GDP 

and in the crude oil price (WTI)30 as well as the second differences in Moody’s commodities 

index as explanatory variables in the base model (see Table 4). The explained variance of the 

model is 48.4% and the adjusted 2R  is 41.3%. We also tested short-term and long-term inter-

est rates as potential explanatory variables, but they were neither univariately nor multivari-

ately significant. The positive signs of the explanatory variables in the base model are eco-

nomically reasonable. A positive sign implies that increasing risk factor realizations go along 

with increasing index realizations and, hence, decreasing default probabilities (see (2)). As an 

increase in GDP can usually be observed in economically good times as well as higher prices 

for commodities and for oil due to the rise in demand, the estimated signs of the explanatory 

variables are in line with our intuition. In the modified models 2 to 7, this is mostly (but not 

always) also the case. Apart from model 3 (log-returns), GDP is significant in all models. The 

adjusted 2R  ranges from 27.8% to 64.1%. The best fit in terms of the adjusted 2R  shows 

model 5 with time-lagged risk factors and the time-lagged macroeconomic index as additional 

explanatory variables. However, based on AIC and BIC, this is one of the worst models. In 

terms of these information criteria, model 3 (log-returns) is the best model. 

 

Figure 2 shows the realized default rates compared with the in-sample and out-of-sample pre-

dictions of the default probabilities (based on (1) and (2)). For the in-sample prediction, the 

observed risk factor realizations of each model are inserted into the respective (1), the error 

term is set equal to its mean zero and the calculated realizations of the macroeconomic index 

are inserted into (2), which yields the predicted default probabilities. For the out-of-sample 

prediction for the years 2011 to 2013, the future risk factor realizations are forecasted by (3), 

                                                 
30 This is the FOB (free on board) price, which does not consider the final delivery costs. 
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where the error terms are set equal to their means zero.31 As can be seen, for most model 

specifications, the in-sample prediction is not too bad, but the out-of-sample prediction is 

poor. This is also confirmed by the results exhibited in Table 5. Based on 1 million forecasts 

of the default rates for 2011 to 2013, Table 5 shows the mean deviation between the fore-

casted default probabilities and the realized default rates for each year { 1, 2, 3}n t t t     

( nMD ), the mean squared error for each year { 1, 2, 3}n t t t     ( nMSE ) and the cumula-

tive mean squared error over all three years (CMSE ): 

 realized
n n n tMD E p PD F    , (13) 

  2realized
n n n tMSE E p PD F    

, (14) 

  
3 2

1

realized
t s t s t

s

CMSE E p PD F 


     , (15) 

where tF  denotes the available information up to time t . The only good news with respect to 

the out-of-sample performance of the model is that in most cases, we observe an overestima-

tion of the realized default rates in 2011 to 2013.32 The best performing models (in terms of 

(cumulative) mean squared errors) are those with time-lagged explanatory variables (models 4 

and 5). 

– insert Figure 2 and Table 5 about here – 

 

4.2 Stressed default probabilities 

Based on the estimated risk factor processes and the macroeconomic index equations, stressed 

default probabilities are forecasted three periods ahead (according to the algorithm described 

in Section 3.1). Depending on the method to make the data stationary, the macroeconomic in-

                                                 
31 The realized default rates for the years 2011 to 2013 are taken from Standard & Poor’s (2014). 
32 See the following Section 4.2 for a detailed discussion of this observation in the case of the base model 1. 
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dex ny  (and, hence, the default probability np ) in each period { 1, 2, 3}n t t t     is com-

puted out of the dependent variable as follows: 

 Model 1 (base model): 1n n ny y y    (16) 

 Model 2 (returns):  1 1n n ny y R    (17) 

 Model 3 (log-returns): 
ln

1
nR

n ny y e   (18) 

where 1n n ny y y     is the first difference,  1 1n n n nR y y y    is the return and 

 ln
1lnn n nR y y   is the log-return of the index values. 

 

The main question examined by this paper is whether different empirically reasonable model 

specifications for credit risk stress tests can yield large differences in the stress test results. 

Tables 6 to 8 and Figures 3 and 4 give a clear answer to this question: Yes, they can. As we 

can see, the forecasted expected default probabilities and the 99.9% quantiles of the probabil-

ity distribution of the forecasted default probabilities can differ considerably between the 

model modifications. In addition to these differences in the level of the forecasted default 

probabilities, there are also differences in the variation over time. In some specifications (e.g., 

in the base model 1), the forecasted default probabilities (expected value as well as 99.9% 

quantile) increase from period 1t   to 2t   and decrease from period 2t   to 3t  . In other 

specifications (e.g., in model 2 (returns) or 3 (log-returns)), an increase in the forecasted de-

fault probabilities over all three periods can be observed. 

 

The results for the base model 1 are very surprising. First, the large expected default prob-

abilities even in the non-stress case are remarkable. This is even more evident when one con-

siders that the last observed default rate in 2010 was 2.9% and that the largest default rate in 
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the whole time period 1983 to 2010 was 11.1%.33 Second, due to the high level of the fore-

casted default probabilities in the non-stress case, in most model specifications, the forecasted 

stress default probabilities are smaller than the forecasted default probabilities in the non-

stress case of the base model 1. A detailed analysis shows that the main reason for the high 

level of the forecasted default probabilities in the non-stress case of the base model are the re-

alizations of the second differences of Moody’s commodities index in 2009 and 2010. These 

are very low (-1,279.23 in 2009) and very high (2,559.36 in 2010), respectively. In 2009, this 

value corresponds to a difference of -2.25 times the standard deviation from the mean. In 

2010, this difference is as much as 4.17 times the standard deviation.34 Through the AR(2) 

process, by which the second differences of Moody’s commodities index are modelled, these 

extreme values cause extreme forecasts for the index in later periods. For example, in 2t   

(corresponding to 2012), the expected forecast of the second difference of the index is -

2,344.74. This corresponds to a difference of -4.03 times the standard deviation from the 

mean of the second differences of the index. This explains the very high expected default 

probability of 16.8% in 2t   in the non-stress case of the base model. Without the data points 

of 2010, the expected default probabilities in the non-stress case of the base model would be 

6.12% ( 1t  ), 6.13% ( 2t  ) and 6.13% ( 3t  ). Without the data points of 2009 and 2010, the 

results would be 3.41% ( 1t  ), 4.62% ( 2t  ) and 5.33% ( 3t  ) and, hence, much less ex-

treme than those results that we get when we use the full data sample to estimate the base 

model. These observations show how sensitive the forecasted (stressed and non-stressed) de-

fault probabilities are with respect to the chosen time period upon which the models are cali-

brated. Of course, this sensitivity is due to the sample length that can usually be used for cali-

brating the models, which is very short anyway. 

                                                 
33 The minimum value is 0.89%, the mean default rate is 4.5% and the standard deviation is 2.8%. 
34 Of course, this ‘problem’ could be solved by assuming that this data point is an outlier and by eliminating it 
from the sample. However, when calibrating models that are used for stress testing, one has to be careful with 
eliminating presumed outliers, because, otherwise, the calibrated model potentially cannot produce sufficiently 
harmful events later on. 
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– insert Table 6 and Figure 3 about here – 

 

In model 4, where the two period time-lagged first difference in GDP is used as the explana-

tory variable in the index equation (1), and in model 5, where the two period time-lagged first 

difference in the macroeconomic index itself is employed as the explanatory variable, a stress 

event in these lagged variables in 1t   mainly has an effect on the stressed default probabili-

ties in 3t  . However, due to the correlation between the explanatory variables, those risk 

factors that are not explicitly stressed in 1t   are also influenced by the stress event, which 

can already have an influence on the stressed default probabilities in 1t   and 2t  . 

 

Table 7 quantifies how large the stress test results of the different model specifications can be 

dispersed. It shows the percentage differences between the largest (upper part of Table 7) and 

smallest (lower part of Table 7), respectively, forecasted stressed default probabilities in the 

base model 1 and in one of the other model specifications 2 to 8 (separated with respect to the 

expected forecasted stressed default probability and the 99.9% quantile and with respect to the 

time period).35 For each model specification, the largest (smallest) forecasted stressed default 

probability corresponds to a specific stress scenario (GDP shock, oil price shock etc.). 

– insert Table 7 about here – 

 

Table 8 shows the effect of changing the stress scenario definition on the forecasted default 

probabilities. In models 9 to 11, the base model 1 has been used, but instead of employing the 

historical worst case as the stress scenario, a stress scenario based on three standard deviations 

and on the Mahalanobis distance has been assumed (see Section 3.3.5). A comparison of the 

results for models 10 and 11 (see Table 6) shows that the inclusion of empirical (cross) auto-

                                                 
35 The results of models 9 to 11 are separately compared with those of the base model 1 because in these model 
modifications the definition of the stress scenarios is altered. 
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correlations in the variance-covariance matrix 9 9  only has a minor effect on the fore-

casted stressed default probabilities. Comparing the results of model 9 with those of models 

10 and 11, the stressed default probabilities of models 10 and 11 in the periods 2t   and 3t   

are larger than those ones of model 9. This is what one could expect, because, in contrast to 

the single three standard deviation stress scenario in 1t  , the Mahalanobis-based stress sce-

narios distribute the stress over all three periods. 

– insert Table 8 about here – 

 

Based on the idea of vertical distances between the tails of the conditional (stress scenarios) 

and unconditional (non-stress scenarios) cumulative density functions for the default prob-

abilities proposed by Schechtman and Gaglianone (2012), the tail pp-plots in Figure 4 give 

another possibility to compare the impact of stress scenarios relative to the non-stress scenario 

for different model specifications. It is assumed that a high quantile (x-axis) of the default 

probability distribution in the non-stress scenario is the maximum risk a bank is able to bear. 

The y-axis visualizes for the non-stress as well as for the stress scenarios the probability of 

not exceeding this specified default probability quantile. Hence, the blue line is always the 

identity function which corresponds to the non-stress scenario of each model specification. 

The other lines indicate what percentage of the forecasted default probabilities in the stress 

scenarios is below the respective quantiles in the non-stress scenario. The larger the vertical 

distance is, i.e. the more the cumulative density functions of the simulated default probabili-

ties in the non-stress scenario and in the various stress scenarios differ, the more severe the 

stress scenario.36 This corresponds to a low probability of not exceeding the specified default 

probability quantile in the non-stress scenario. Although the GDP shock proves to be the most 

severe one in eight out of eleven model specifications, Figure 4 shows that the extent of the 

vertical distances can vary considerably with the considered model specification. 

                                                 
36 For Figure 4, only the first future period 1t   has been considered. 
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– insert Figure 4 about here – 

 

5 Discussion 

In Section 3.1, we assumed that the covariances between the error terms of the index equa-

tions (see (1)) and the error terms of the risk factor equations (see (3)) are equal to zero 

( , , 0u v v u    ). Deviating from this assumption would have two important implications. 

First, when doing the stress simulations for the future default probabilities, the shock for the 

error term would have to be placed on the 1st position of the vector z  (instead of the 1S  th 

position) that is multiplied with the lower triangular matrix of the Cholesky decomposition of 

the variance-covariance matrix  . Of course, this would have an influence on the simulated 

stressed default probabilities. Second, the assumption , 0u v   would directly cause an en-

dogeneity problem in the index equation (1). When the error term su  of sector s  is correlated 

with the error term iv  of any risk factor i , this implies ( , ) 0i sCorr x u  . As a consequence, 

the OLS estimators for the parameters ,0 ,,...,s s I   of the index equation would be biased and 

inconsistent. In many studies on stress testing that use the CPV model the possibility , 0u v   

is not directly excluded, but the issue of endogeneity is rarely explicitly addressed.37 

 

As we only assumed , , 0u v v u     and as an endogeneity problem might exist even if this 

assumption is true (for example because of missing correlated variables in the index equa-

tion), we test for endogeneity of each of the explanatory variables (GDP ( t ), Oil price WTI 

(FOB) ( t ) and Moody’s commodities index ( t )) in our base model 1. For this purpose, the 

Hausman test is employed. To perform this test, we need instrument variables (IV) that are 

                                                 
37 See, for example, Boss (2002) or Virolainen (2004). An exception is Schechtman and Gaglianone (2012). 
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strong and exogeneous.38 First, as in Schechtman and Gaglianone (2012), we try the one pe-

riod lagged risk factors as IV. However, the lagged variables GDP ( 1t  ) and Oil price 

WTI (FOB) ( 1t  ) prove to be weak IV, because their F -statistics are 4.15 and 5.12, respec-

tively. Only the lagged variable Moody’s commodities index ( 1t  ) can be considered to 

be strong because its F -statistic is 16.85 and, hence, sufficiently above 10. Data from the 

World Development Indicator 2012 of the World Bank is employed to find strong IV for GDP 

and the oil price. Out of the more than 100 variables, four contemporary variables are strong 

IV for GDP ( t ). The variable with the largest F -statistic (38.41) is the first difference in 

‘external balance on goods and services (constant LCU)’.39 For Oil price WTI (FOB) ( t ), 

the contemporary variable ‘portfolio equity, net inflows (BoP, current USD)’ is the only 

strong IV with an F -statistic of 22.68.40 Next, the two latter IV are checked for exogeneity 

using a further Hausman test.41 For External balance on goods and services ( t ), the one pe-

riod lagged variable is used as IV ( F -statistic 14.57) and the null hypothesis of exogeneity 

cannot be rejected ( p -value: 0.164). For Portfolio equity, net inflows ( t ), the one period 

lagged variable is no strong IV, but the one period lagged variables ‘net income from abroad 

(current LCU)’ and ‘net current transfers from abroad (constant LCU)’ (first differences) 

prove to be strong IV. With these IV, the exogeneity of Portfolio equity, net inflows ( t ) 

cannot be rejected ( p -value of at least 0.267).42 

 

                                                 
38 The IV parameter estimates needed for the Hausman test statistic are computed using Two Stage Least 
Squares (2SLS). 
39 To reach stationarity, first differences have been computed. LCU stands for ‘local currency unit’. 
40 Again, first differences have been computed. According to the World Bank, the variable ‘external balance on 
goods and services (% of GDP)’ (formerly resource balance) is defined as exports of goods and services minus 
imports of goods and services (previously nonfactor services). The variable ‘portfolio equity, net inflows (BoP, 
current USD)’ includes net inflows from equity securities other than those recorded as direct investment and in-
cluding shares, stocks, depository receipts (American or global), and direct purchases of shares in local stock 
markets by foreign investors. 
41 The exogeneity of the lagged variable Moody’s commodities index ( 1t  ) as IV for Moody’s commodi-
ties index ( t ) is just assumed. 
42 The exogeneity of the IV for the IV is just assumed. 
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Finally, the Hausman test for endogeneity of the explanatory variables of the base model 1 is 

carried out. As Table 9 shows, the null hypothesis of exogeneity cannot be rejected in any 

case. Thus, endogeneity and biased parameter estimates seem to be no problem in the base 

model. However, it has to be considered that the Hausman test is only asymptotically valid 

and that our sample with only 26 data points is not very large. 

- insert Table 9 about here - 

 

In CPV-style stress test models, it is assumed that there is a linear relationship between the 

macroeconomic index (corresponding to the transformed default rates) and the explanatory 

risk factors (see (1) and (2)). As the scatter plots in Figure 5 show, for our sample, the rela-

tionship between the logit-transformed default rates and the explanatory risk factors is at best 

rudimentarily linear. There are some severe outliers that are not captured by a linear relation-

ship. These could possibly be explained by the well-known criticism with respect to stress 

tests that statistical relationships can change in an unpredictable manner in a crisis (see, for 

example, Alfaro and Drehmann (2009)). This deficiency reduces the suitability of the (linear) 

approach as a base for a credit risk stress test.43 

- insert Figure 5 about here - 

 

A further criticism of credit risk stress tests based on CPV-style models concerns the specifi-

cation of the error terms ,s tu  for the macroeconomic index in (1) (see Schechtman and Gagli-

anone (2012, p. 176)). These are assumed to be multivariately normally distributed (together 

with the error terms ,i tv  for the risk factors in (3)), serially (cross) uncorrelated and homosce-

dastic. Unfortunately, the employed data does not always fit with these assumptions. How-

ever, a violation of these assumptions would not only have to be considered within a rigorous 

                                                 
43 Removing these outliers is not appropriate, because doing this would destroy stress information. 
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statistical estimation of the parameters ,0 ,,...,s s I   in (1), but also within the simulation of fu-

ture (stressed) default probabilities (see Section 3.1). For example, assuming that the error 

terms ,s tu  are fat-tailed t -distributed (as in Simons and Rolwes (2009), for example) could 

change the density functions of the forecasted stressed default probabilities in Figure 3 (and, 

hence, the quantiles) considerably. 

 

6 Conclusions 

We analyzed to which extent multi-period stressed values of default probabilities within a 

given framework are affected by modelling assumptions and estimation techniques. To 

achieve this, starting from a base model specification, we employed several variations of a 

CreditPortfolioView (CPV)-style model. All variations were statistically sound approaches 

and it was not obvious ex-ante why one specification or estimation technique should be more 

adequate than another specification or technique. We showed that the chosen model specifica-

tions and the employed estimation techniques can hugely influence the results for the stressed 

default probabilities. These results show the importance of extensive robustness checks for the 

underlying model when interpreting the results of model-based credit risk stress tests. Consid-

ering the close relationship between stress test models and regular risk models, an extensive 

evaluation of the underlying assumptions is deemed to be necessary in regular risk models, 

too. Even non-stressed PDs, LGDs or interest rate parameters are likely to bear considerable 

model and estimation risk. 

 

Furthermore, it should be noted that the transformation of macroeconomic variables into risk 

parameter realizations is required in many situations. For example, for an assessment of the 

idiosyncratic risk of a single bank, it may be sufficient to directly employ stressed risk pa-

rameters. In contrast, for a standardized system-wide stress test across various jurisdictions, 

the use of directly stressed risk parameters given by the regulatory authorities appears not to 
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be adequate. This approach might be well-suited to some jurisdictions or some banks, but 

would be inappropriate for others, for example, because of diverging business models. 
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Tables 

Table 1: Endogenous and exogenous variables  

Endogenous variable 

Default rates Standard & Poor’s (2011) 

Exogenous variables 

Economic activity indicators 

Gross domestic product (GDP) Datastream: USGDP...D 

Industrial production Datastream: USIPTOT.G 

Price stability indicators 

Inflation Datastream: USCONPRCE 

Money supply M1 Datastream: USM1....B 

Money supply M3 Datastream: USYMA013Q 
Moody’s commodities index (price 
index) Datastream: MOCMDTY 
Reuter’s commodities index (price 
index) Datastream: RECMDTY 

Household indicators 

Personal consumption expenditure Datastream: USCNPER.B 

Disposable personal income Datastream: USPERDISB 

New home sales Datastream: USHOUSESE 

Unemployment rate Datastream: USUN%TOTQ 

Firm indicators 
NAHB/Wells Fargo housing market 
index Datastream: USNAHBMI 

Consumer confidence Datastream: USCNFCONQ 

Consumer sentiment Datastream: USUMCONSH 

Financial market indicators 

3M-treasury bill rate Datastream: USGBILL3 

S&P 500 Datastream: S&PCOMP 

External indicators 

Exports Datastream: USEXPGDSB 

Imports Datastream: USIMPGDSB 

Japanese Yen/USD exchange rate Datastream: JPXRUSD 

USD/GBP exchange rate Datastream: STUSBOE 

Oil price Brent (FOB) per Barrel Datastream: OILBREN 

Oil price Brent per Barrel Datastream: OILBRDT 

Oil price WTI (FOB) per Barrel Datastream: OILWTXI 

Oil price WTI per Barrel Datastream: CRUDOIL 
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Table 2: 

Overview of the specification of the base model and the considered modifications 

 Base model Modifications 
Stationary method First differences 

and, if necessary, 
second differences 

Returns (if necessary second returns), 
log-returns 

   
Time-lagged risk factors No Additional to contemporary variables, 

time-lagged macroeconomic variables 
and time-lagged macroeconomic in-
dex as explanatory variables for the 
macroeconomic index 

   
Estimator OLS GLS 
   
Time series processes for 
macroeconomic variables 

AR(1)/AR(2) (based 
on AIC/BIC with 
only significant pa-
rameters) 

Fixed AR(2) 

   
Transformation between de-
fault rate and macroeco-
nomic index 

Logit Probit 

   
Stress test scenario Historical worst 

case scenario 
Hypothetical scenarios based on three 
standard deviations of the error terms 
and based on the Mahalanobis dis-
tance 
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Table 3: Estimates of the risk factor processes 
  

Parameters 
AIC/
BIC R2 Adjusted R2 

Applied 
specification 

Model 1: Base model  
(Intercept) 175.7788**  GDP (t) 
t-1 0.392* 

338.9/
342.6 

0.1529 0.1161 AR(1) 

 Oil price WTI 
(FOB) (t) 

t-1 -0.3937** 201.5/
203.9 

0.1529 0.1176 AR(1) without in-
tercept 

t-1 -1.2539***  Moody’s 
commodities index (t) t-2 -1.5297*** 

351.4/
355.0 

0.7332 0.7089 AR(2) without in-
tercept 

Model 2: Stationary methods (returns)  
Return GDP (t)  195.3/

196.5 
- - Error term 

Return Moody’s 
commodities index (t) 

(Intercept) 0.07181* -12.7/
-10.2 

- - Intercept 

Model 3: Stationary methods (log-returns)  
Log-return Money 
supply M3 (t) 

 29.4/ 
30.7 

- - Error term 

Log-return Imports (t) (Intercept) 0.07418*** -46.5/
-44.0 

- - Intercept 

Model 4: Time-lagged risk factors  
(Intercept) 155.208*  GDP (t-2) 
t-1 0.4735** 

309.6/
313.1 

0.1785 0.1412 AR(1) 

 Imports (t) (Intercept) 62684* 671.3/
673.7 

- - Intercept 

 Oil price WTI 
(FOB) (t) 

t-1 -0.3864* 193.4/
195.8 

0.1541 0.1173 AR(1) without in-
tercept 

Model 5: Time-lagged risk factors and time-lagged macroeconomic index  
 Macroeconomic 
index (t-2) 

 43.7/ 
45.0 

- - Error term 

(Intercept) 176.8452**  GDP (t) 
t-1 0.3927* 

326.6/
330.1 

0.1535 0.115 AR(1) 

(Intercept) 37.4244*** 
t-1 1.1975*** 

Consumer confidence 
(t) 

t-2 -0.5843*** 

195.0/
199.5 

0.6714 0.6385 AR(2) 

Model 6: GLS estimator  
 GDP (t) (Intercept) 176.7004** 0.1501 0.1146 AR(1) 
 t-1 0.381* 

351.3/
355.1    

 Oil price WTI 
(FOB) (t) 

t-1 
 

-0.3944* 
 

208.4/
210.9 

0.1533 
 

0.1195 
 

AR(1) without in-
tercept 

 Money 
supply M3 (t) 

  
 

112.6/
113.9 

- - Error term 

Model 7: Probit transformation  
(Intercept) 175.7788**  GDP (t) 
t-1 0.392* 

339.0/
342.6 

0.1529 0.1163 AR(1) 

t-1 -1.2539***  Moody’s 
commodities index (t) t-2 -1.5297*** 

351.4/
355.0 

0.7332 0.7089 AR(2) without in-
tercept 

Model 8: Fixed AR(2) process for risk factors  
(Intercept) 270.6948*** 
t-1 0.6136** 

 GDP (t) 

t-2 -0.4978 

326.3/
331.0 

0.2307 0.1575 AR(2) (fixed) 

(Intercept) 4.1703 
t-1 -0.511** 

 Oil price WTI 
(FOB) (t) 

t-2 -0.1801 

194.5/
199.2 

0.2144 0.1396 AR(2) (fixed) 

(Intercept) 69.5162 
t-1 -1.2384*** 

 Moody’s 
commodities index (t) 

t-2 -1.5537*** 

352.3/
357.0 

0.7416 0.717 AR(2) (fixed)# 

This table summarizes the OLS parameter estimates of the risk factor processes and their sig-
nificance. The symbols *, ** and *** denote significance at the 10%, 5% and 1% level. When 
the minimal p -value of the Godfrey-Breusch test (up to a lag of 4) is below 5%, the Newey-
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West estimator is used (denoted by #). The symbols  and  denote first and second differ-
ences. When the specification only consists of the error term or an intercept plus error term, 
calculation of 2R  or the adjusted 2R  is not possible. Due to differing transformation methods 
for the time series or differing lengths of the time series, the specification of the AR processes 
can be different for the same risk factor across the various models. 
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Table 4: Estimation results for the macroeconomic index equation 

 
Parameters 

p-value Godfrey 
Breusch test R2 Adj. R2 AIC BIC 

Model 1: Base model >0.1321 0.4837 0.4132 43.1 49.3 
Intercept -0.3377*      
 GDP (t) 0.001*      
 Oil price WTI (FOB) (t) 0.0147*      
 Moody’s commodities index (t) 0.0004**      
Model 2: Stationary methods (returns) >0.2218 0.3335 0.2779 -10.3 -6.5 
Return GDP (t) -0.007*    
Return Moody’s commodities in-
dex (t) 0.5452***  

    

Model 3: Stationary methods (log-returns) >0.568 0.4201 0.3718 -16.6 -11.4 
Intercept -0.0756*    
Log-return money supply M3 (t) -0.1923**    
Log-return imports (t) 0.8722**      
Model 4: Time-lagged risk factors >0.1524 0.5984 0.541 36.3 42.4 
Intercept 0.4142*     
 GDP (t-2) -0.0018***      
 Imports (t) 0.000002***      
 Oil price WTI (FOB) (t) 0.0192***      
Model 5: Time-lagged risk factors and 
time-lagged macroeconomic index 

>0.6426 0.6858 0.6409 30.1 36.2 

Intercept 1.0193***    
 Macroeconomic index (t-2) -0.282*    
 GDP (t) 0.0021***      
Consumer confidence (t) -0.0164***      
Model 6: GLS estimator  - - - 74.1 80.9 
Intercept -0.4596**      
 GDP (t) 0.0013**      
 Oil price WTI (FOB) (t) 0.0137**      
 Money supply M3 (t) -0.1072*      
Model 7: Probit transformation >0.2834 0.4123 0.3612 2.3 7.3 
Intercept -0.1467*    
 GDP (t) 0.0005*      
 Moody’s commodities index (t) 0.0002**      

This table summarizes the OLS parameter estimates of the macroeconomic index equation (1) 
and their significance for various specifications. The symbols *, ** and *** denote signifi-
cance at the 10%, 5% and 1% level. For all specifications, the variance inflation factor has 
been calculated (not shown in the table). As it is always only slightly above 1, multicollinear-
ity between the explanatory variables can be ruled out. 
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Table 5: Out-of-sample performance 

 t+1 
(2011)

t+2 
(2012)

t+3 
(2013) 

Realized default rates 1.80% 2.52% 2.23% 
  
Mean deviation MDn  
Model 1 Base model 4.28% 14.28% 0.87% 
Model 2 Stationary methods (returns) 1.40% 1.07% 1.72% 
Model 3 Stationary methods (log-returns) 1.56% 1.37% 2.15% 
Model 4 Time-lagged risk factors -0.81% -1.27% -0.68% 
Model 5 Time-lagged risk factors and time-
lagged macroeconomic index -0.68% -1.20% -0.56% 
Model 6 GLS estimator 1.99% 2.39% 4.20% 
Model 7 Probit transformation 3.73% 11.32% 0.36% 
Model 8 Fixed AR(2) process for risk factors 2.32% 7.82% -0.58% 
  
Mean squared error MSEn  CMSE
Model 1 Base model 0.003217 0.033652 0.001462 0.038332
Model 2 Stationary methods (returns) 0.000910 0.002061 0.003906 0.006878
Model 3 Stationary methods (log-returns) 0.000714 0.001244 0.002175 0.004132
Model 4 Time-lagged risk factors 0.000108 0.000307 0.000451 0.000866
Model 5 Time-lagged risk factors and time-
lagged macroeconomic index 0.000087 0.000303 0.000600 0.000990
Model 6 GLS estimator 0.001157 0.003363 0.008645 0.013164
Model 7 Probit transformation 0.002343 0.019717 0.000968 0.023028
Model 8 Fixed AR(2) process for risk factors 0.001168 0.012252 0.000430 0.013851

 
Table 5 shows the mean deviation (in percentage points) between the forecasted default prob-
abilities and the realized default rates for each year, the mean squared error for each year and 
the cumulative mean squared error over all three years. Expectations are based on 1 million 
forecasts of the default probabilities for 2011 to 2013. 
 



 38 

Table 6: Forecasted default probabilities 

    t+1 t+2 t+3          
Model 1: Base model      
Mean                
  Non-stress 6.08% 16.80% 3.10%    
  GDP 12.49% 29.50% 6.97%    
  Crude oil price 10.76% 23.03% 4.98%    
  Commodities index 9.65% 18.88% 3.73%       
99.9% quantile             
  Non-stress 27.17% 70.02% 33.80%    
  GDP 41.40% 81.97% 53.01%    
  Crude oil price 37.93% 77.37% 44.85%       
  Commodities index 35.48% 72.47% 38.12%       
           
Model 2: Stationary methods (returns)      Model 3: Stationary methods (log-returns)     
Mean          Mean         
  Non-stress 3.20% 3.59% 3.95%   Non-stress 3.36% 3.89% 4.38%
  GDP 3.77% 4.21% 4.61%   Money supply M3 9.48% 9.99% 10.46%
  Commodities index 5.00% 5.52% 5.96%   Imports 6.07% 6.65% 7.18%
99.9% quantile          99.9% quantile         
  Non-stress 21.95% 39.31% 55.15%   Non-stress 13.50% 19.60% 24.20%
  GDP 23.48% 42.55% 58.55%   Money supply M3 20.76% 27.22% 31.27%
  Commodities index 27.38% 48.93% 65.28%   Imports 16.41% 23.15% 27.78%
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Table 6 [continued] 
 
    t+1 t+2 t+3       t+1 t+2 t+3 
Model 4: Time-lagged risk factors  Model 5: Time-lagged risk factors and time-lagged macroeconomic index 
Mean          Mean         
  Non-stress 0.99% 1.25% 1.55%   Non-stress 1.12% 1.32% 1.67%
  GDP (t-2) 1.02% 1.28% 2.13%   GDP 3.27% 4.36% 5.12%
  Imports 3.82% 4.51% 5.72%   Index (t-2) 1.29% 1.64% 2.69%
  Crude oil price 1.89% 1.93% 2.55%   Consumer confidence 0.85% 1.29% 2.31%
99.9% quantile          99.9% quantile         
  Non-stress 5.23% 10.85% 19.85%   Non-stress 4.96% 11.21% 23.89%
  GDP (t-2) 5.38% 10.94% 24.21%   GDP 8.64% 23.28% 46.27%
  Imports 13.37% 27.37% 46.09%   Index (t-2) 5.59% 13.23% 31.65%
  Crude oil price 8.17% 15.28% 28.25%   Consumer confidence 3.54% 10.89% 29.49%
           
Model 6: GLS estimator      Model 7: Probit transformation 
Mean          Mean         
  Non-stress 3.79% 4.91% 6.43%   Non-stress 5.53% 13.84% 2.59%
  GDP 9.80% 14.08% 18.33%   GDP 9.91% 22.34% 5.52%
  Crude oil price 6.78% 7.92% 10.67%   Commodities index 8.05% 14.93% 2.97%
 Money supply M3 5.74% 7.50% 9.73% 99.9% quantile         
99.9% quantile      Non-stress 20.96% 51.48% 24.99%
  Non-stress 21.52% 43.75% 65.63%   GDP 29.05% 63.06% 37.10%
  GDP 37.62% 67.84% 85.59%   Crude oil price 25.65% 53.32% 27.29%
  Crude oil price 30.87% 55.35% 77.26%   
 Money supply M3 26.13% 51.86% 73.72%    
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Table 6 [continued] 
 
    t+1 t+2 t+3       t+1 t+2 t+3 
Model 8: Fixed AR(2) processes for risk factors  Model 9: Three standard deviations stress scenario 
Mean          Mean         
  Non-stress 4.12% 10.34% 1.65%   Non-stress 6.08% 16.80% 3.10%
  GDP 8.13% 20.00% 3.44%   GDP 12.71% 29.88% 7.11%
  Crude oil Price 7.40% 14.22% 2.43%   Crude oil price 11.34% 23.68% 5.20%
  Commodities index 6.79% 11.84% 1.91%   Commodities index 11.00% 19.50% 3.94%
99.9%-quantile       99.9%-quantile      
  Non-stress 18.80% 54.06% 18.98%   Non-stress 27.17% 70.02% 33.80%
  GDP 29.19% 69.86% 31.90%   GDP 41.91% 82.27% 53.59%
  Crude oil price 27.35% 62.67% 25.42%   Crude oil price 39.38% 78.08% 46.07%
  Commodities index 25.86% 57.31% 21.18%   Commodities index 39.00% 73.35% 39.50%
           
Model 10: Mahalanobis-based stress scenario (no (cross) autocorrelation)  

 
Model 11: Mahalanobis-based stress scenario (empirical (cross) 
autocorrelation) 

Mean          Mean         
  Non-stress 6.08% 16.80% 3.10%   Non-stress 6.08% 16.80% 3.10%
  GDP (equiv.) 11.68% 37.60% 16.60%   GDP (equiv.) 12.31% 39.69% 18.72%
  Crude oil price (equiv.) 11.54% 36.83% 15.88%   Crude oil price (equiv.) 11.26% 35.88% 14.98%

  
Commodities index 
(equiv.) 

11.44% 35.15% 14.40%
   

Commodities index 
(equiv.) 

11.21% 34.41% 13.73%

99.9%-quantile       99.9%-quantile      
  Non-stress 27.17% 70.02% 33.80%   Non-stress 27.17% 70.02% 33.80%
  GDP (equiv.) 36.24% 83.67% 70.38%   GDP (equiv.) 37.66% 84.96% 73.65%
  Crude oil price (equiv.) 35.98% 83.32% 69.25%   Crude oil price (equiv.) 35.31% 82.68% 67.61%

  
Commodities index 
(equiv.) 

35.55% 81.91% 66.55%
   

Commodities index 
(equiv.) 

35.00% 81.36% 65.19%

Table 6 shows the mean and the 99.9% quantile of the probability distribution for the forecasted stressed default probabilities in various model 
specifications. In the case of models 10 and 11, the stress test scenarios are characterized by the most harmful (in the sense of (12)) scenarios out of 
those trust regions Ell  that correspond to the respective three standard deviations stress of the macroeconomic variables in the base model (see 
Section 3.3.4.2). 
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Table 7: 
Percentage differences between forecasted stressed default probabilities in the base 
model 1 and in model modifications 2 to 8 
 

  t+1 t+2 t+3 
Stressed default probabilities (maximum)   
Mean   
 Max -20.6% -24.3% 163.0% 
 Min -73.8% -85.2% -50.6% 
 Mean -43.5% -60.9% 11.8% 
 Standard deviation 23.5% 25.3% 73.4% 
99.9% quantile        
 Max -9.1% -14.8% 61.5% 
 Min -79.1% -71.6% -41.0% 
 Mean -42.7% -42.9% -7.4% 
 Standard deviation 24.3% 25.2% 37.5% 
Stressed default probabilites (minimum)  
Mean   
 Max -16.6% -20.9% 160.7% 
 Min -91.1% -93.2% -49.0% 
 Mean -52.2% -63.9% 18.1% 
 Standard deviation 29.2% 27.3% 80.3% 
99.9% quantile        
 Max -26.3% -20.9% 93.4% 
 Min -90.0% -85.0% -44.4% 
 Mean -49.1% -50.7% -1.7% 
 Standard deviation 27.9% 28.0% 53.1% 

 
Table 7 quantifies the percentage differences between the highest (upper part of Table 7) and 
lowest (lower part of Table 7) forecasted stressed default probabilities in the base model 1 and 
in one of the other model specifications 2 to 8 (separated with respect to the forecasted ex-
pected stressed default probability (mean) and the 99.9% quantile and with respect to the time 
period). For each model specification, the largest (smallest) forecasted stressed default prob-
ability corresponds to a specific stress scenario (GDP shock, oil price shock, etc.). 
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Table 8: 
Percentage differences between forecasted stressed default probabilities in the base 
model 1 and in model modifications 9 to 11 
 

  t+1 t+2 t+3 
Stressed default probabilities (maximum)   
Mean   
 Max 1.8% 34.5% 168.5% 
 Min -6.5% 1.3% 2.0% 
 Mean -2.0% 21.1% 102.9% 
 Standard deviation 4.1% 17.5% 88.7% 
99.9% quantile   
 Max 1.2% 3.7% 38.9% 
 Min -12.5% 0.4% 1.1% 
 Mean -6.8% 2.0% 24.3% 
 Standard deviation 7.1% 1.6% 20.3% 
Stressed default probabilites (minimum)  
Mean   
 Max 18.6% 86.2% 285.7% 
 Min 14.0% 3.3% 5.4% 
 Mean 16.2% 57.2% 186.3% 
 Standard deviation 2.3% 46.8% 156.9% 
99.9% quantile   
 Max 9.9% 13.0% 74.6% 
 Min -1.4% 1.2% 3.6% 
 Mean 2.9% 8.8% 49.7% 
 Standard deviation 6.1% 6.6% 40.0% 

 
Table 8 quantifies the percentage differences between the highest (upper part of Table 8) and 
lowest (lower part of Table 8) forecasted stressed default probabilities in the base model 1 and 
in one of the other model specifications 9 to 11 (separated with respect to the forecasted ex-
pected stressed default probability (mean) and the 99.9%-quantile and with respect to the time 
period). For each model specification, the largest (smallest) forecasted stressed default prob-
ability corresponds to a specific stress scenario (GDP shock, oil price shock, etc.). 
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Table 9: 
Hausman test for the base model 1 
 
Variable IV F-statistic Correlation p-value 

Hausman 
test 

GDP ( t ) External balance on 
goods and services ( t ) 

38.41 -0.78 0.61 

Oil price WTI 
(FOB) ( t ) 

Portfolio equity, net 
inflows ( t ) 

22.68 0.70 0.52 

Moody’s com-
modities index ( t ) 

Moody’s commodi-
ties index ( 1t  ) 

16.85 -0.65 0.60 

 
Table 9 shows the results of a Hausman test for endogeneity of the explanatory variables in 
the base model 1. Based on the employed instrument variables (IV), the null hypothesis of 
exogeneity cannot be rejected for any of the explanatory variables. 
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Figures 
Figure 1: Overview of the stepwise regression approach 

 
Figure 1 shows the stepwise regression approach for variable selection that is repeated for 
model specifications 1 to 7. A prerequisite for adding a variable (to avoid (imperfect) multi-
collinearity) is that the absolute value of their correlation with any of the other variables that 
have already been included in the model is below 0.8. 
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Figure 2: Realized default rates versus in-sample and out-of-sample forecasted default 

probabilities 

 
 
Figure 2 shows the realized default rates compared with the in-sample and out-of-sample pre-
dictions of the default probabilities (based on (1) and (2)). For the in-sample prediction, the 
observed risk factor realizations of each model are inserted into the respective (1), the error 
term is set equal to its mean zero and the calculated realizations of the macroeconomic index 
are inserted into (2), which yields the predicted default probabilities. For the out-of-sample 
prediction, the future risk factor realizations are forecasted by (3), where the error terms are 
set equal to their means zero. 
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Figure 3: Density functions of forecasted default probabilities

t = 1 t = 2 t = 3
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Figure 3 [continued] 

t = 1 t = 2 t = 3



 48 

 
 

 

 

Figure 3 [continued] 

t = 1 t = 2 t = 3
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Figure 3 [continued] 

t = 1 t = 2 t = 3
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Figure 4: Tail pp-plots 
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Figure 4 [continued] 
 

 
 
Based on the idea of vertical distances between the tails of the conditional (stress scenarios) 
and unconditional (non-stress scenarios) cumulative density functions for the default prob-
abilities proposed by Schechtman and Gaglianone (2012), Figure 4 shows the tail pp-plots for 
the various model specifications. It is assumed that a high quantile (x-axis) of the default 
probability distribution in the non-stress scenario is the maximum risk a bank is able to bear. 
The y-axis visualizes for the non-stress as well as for the stress scenarios the probability of 
not exceeding this specified default probability quantile. Hence, the blue line is always the 
identity function which corresponds to the non-stress scenario of each model specification. 
The other lines indicate what percentage of the forecasted default probabilities in the stress 
scenarios is below the respective quantiles in the non-stress scenario. The larger the vertical 
distance is, i.e. the more the cumulative density functions of the simulated default probabili-
ties in the non-stress scenario and in the various stress scenarios differ, the more severe the 
stress scenario. This corresponds to a low probability of not exceeding the specified default 
probability quantile in the non-stress scenario. 
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Figure 5: Scatter plots of the macroeconomic index and the explanatory variables in the 
base model 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 shows that the linear relationship between the logit-transformed realized default rates 
and the explanatory risk factors that is assumed in CPV-style stress test models is not exactly 
given for the employed sample. 
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